β-thalassemia

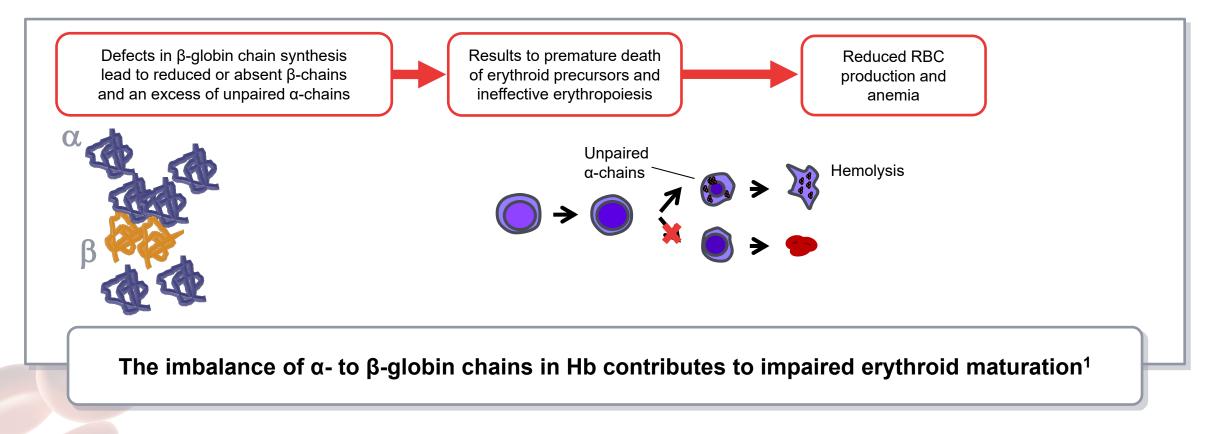
Background information and disease characteristics

 $\hat{\mathbf{U}}$

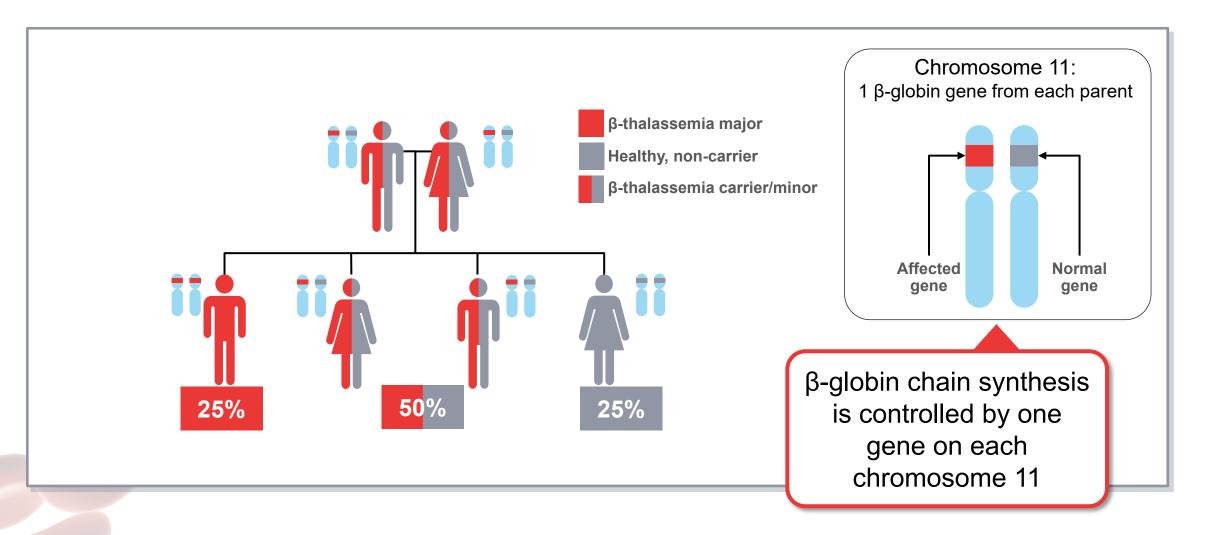
Contents

合 く >

- 1.1 β-thalassemia
- **1.2** Inheritance pattern
- **1.3 Epidemiology**
 - 1.3.1 Migration
 - **1.3.2** Ethnic groups at increased risk
- **1.4** Ineffective erythropoiesis in β-thalassemia
 - **1.4.1** Ineffective erythropoiesis (IE)
 - **1.4.2** Characteristics of IE
 - **1.4.3** Erythroid maturation defects (EMDs)
 - 1.4.4 Implications of IE
- **1.5** Anemia in β-thalassemia
- **1.6** Classification per disease severity
- **1.7** Clinical presentation: Symptoms and complications
- 1.8 Diagnosis
- **1.9 Mutations**
- 1.10 Summary



β-thalassemia


β-thalassemia is an inherited blood disorder that reduces production of hemoglobin¹

 Characterized by reduced or absent synthesis of the β-globin chain component of hemoglobin (Hb), decreased Hb in the blood, RBC production and anemia

Inheritance pattern

The inheritance of β-thalassemia follows an autosomal recessive pattern¹

1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010 May 21;5:11.

Epidemiology: Incidence and prevalence

The total annual incidence of symptomatic individuals is 1 in 100,000¹

- Approximately 1.5% of the global population (80 to 90 million people) are carriers of β-thalassemia
- Around 60,000 symptomatic individuals are born annually, with the majority born in the developing world

The highest frequency of β-thalassemia carriers is in sub-Saharan Africa, the Mediterranean, Middle East, South Asia, and Southeast Asia due to the conferred resistance of carriers to severe forms of malaria¹

1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010 May 21;5:11.

△>

Epidemiology: Migration

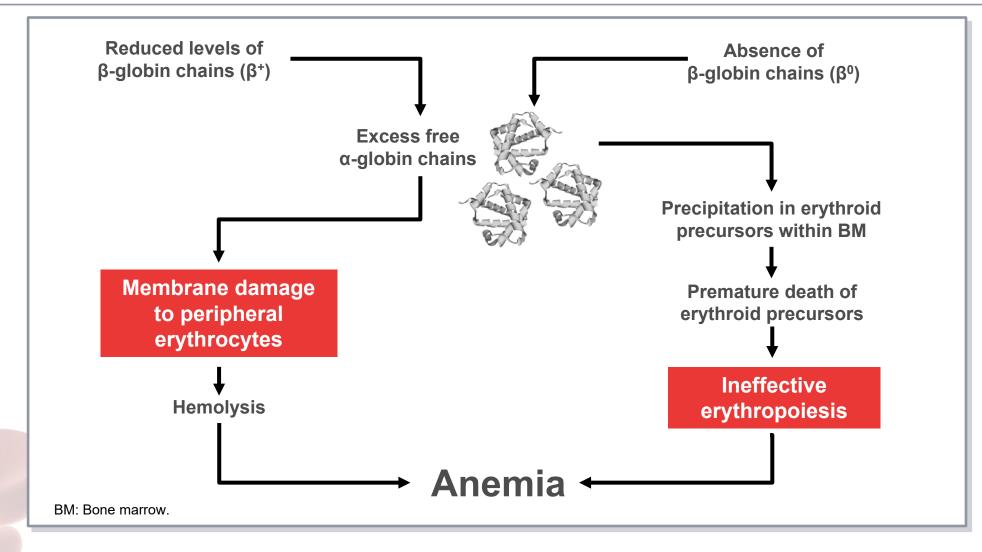
1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010 May 21;5:11.

Epidemiology: Ethnic groups at increased risk

The geographic distribution of ethnic populations in Canada at increased risk for thalassemia¹

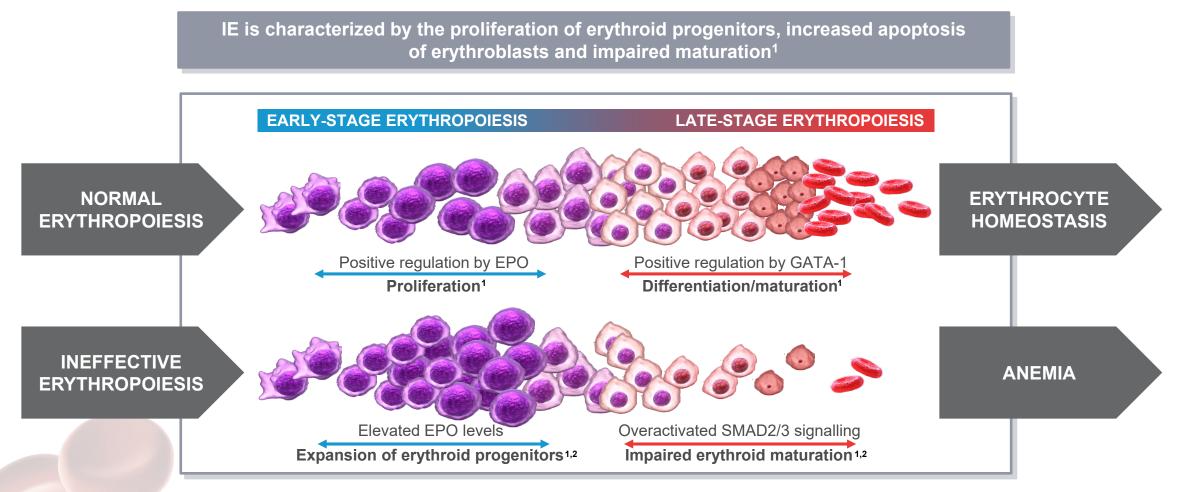
Regions of Origin	Thalassemia
Africa	1
/lediterranean region e.g., Sardinia, Corsica, Sicily, Italy, Spain, Portugal, Greece, Cyprus, Turkey, Egypt, Algeria, Libya, Tunisia, Morocco, Malta	1
/liddle East e.g., Iran, Iraq, Syria, Jordan, Saudi Arabia and other Arabian peninsula countries, Qatar, Lebanon, Palestine, Israel (both Arabs and Sephardic Jews affected), Kuwait	1
Southeast Asia e.g., India, Afghanistan, Pakistan, Indonesia, Bangladesh, Thailand, Myanmar	1
Vestern Pacific region e.g., China, Vietnam, Philippines, Malaysia, Cambodia, Laos	1
Caribbean countries	1
South American countries	•

1. Langlois S, Ford JC, Chitayat D et al. Carrier screening for thalassemia and hemoglobinopathies in Canada. J Obstet Gynaecol Can 2008;30:950-959.


www.keepmaturationontrack.ca

1.3.2

 $\mathbf{\hat{\mathbf{D}}}$



Ineffective erythropoiesis in β-thalassemia¹

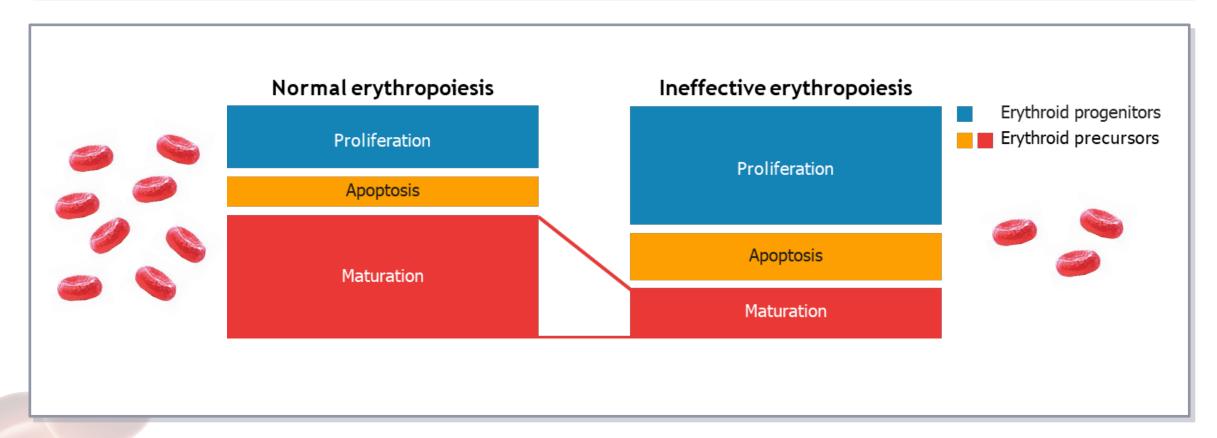
1. Cappellini MD, Cohen A, Porter J, et al. Guidelines for the management of TD thalassemia. 3rd edition. Nicosia (CY): thalassemia International Federation. 2014. Accessed September 2020.

Ineffective erythropoiesis (IE)

EPO: Erythropoietin.

1. Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018;32:130-143.

2. Valent P, Büsche G, Theurl I, et al. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica 2018;103:1593-1603.

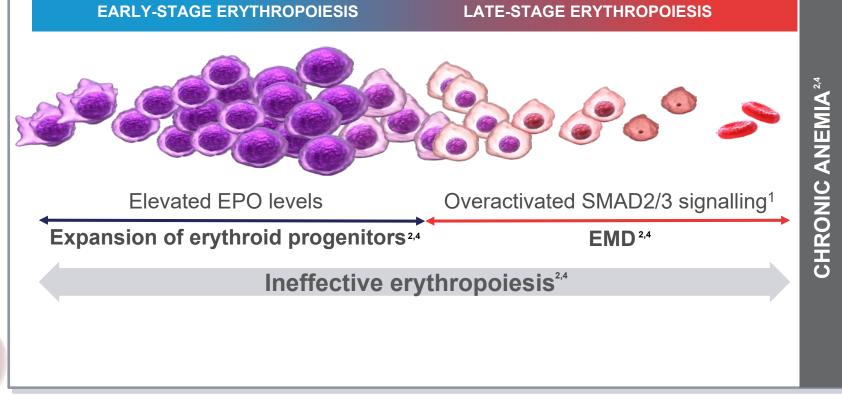

www.keepmaturationontrack.ca

 $\mathbf{\Omega}$

Characteristics of IE

IE is an ongoing pathological state where increased erythroid proliferation is unable to restore red blood cell counts^{1,2}

1. Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol 2016;172:512-523.


2. Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol 2016;174:661-673.

Erythroid maturation defects (EMDs) EMDs form the underlying mechanism of ineffective erythropoiesis¹

 These defects occur in late-stage erythropoiesis and contribute to IE and chronic anemia observed in β-thalassemia¹⁻³

 EARLY-STAGE ERYTHROPOIESIS

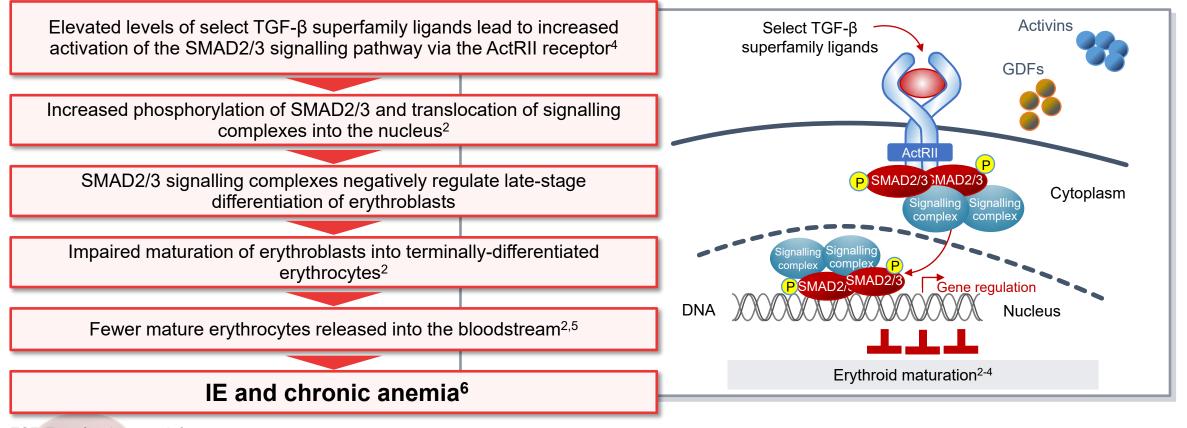
 LATE-STAGE ERYTHROPOIESIS

1. Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. *Br J Haematol* 2016;174:661-673.

2. Valent P, Büsche G, Theurl I, et al. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica 2018;103:1593-1603.

3. Koury MJ. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev 2014;28:49-66.

4. Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018;32:130-143.


www.keepmaturationontrack.ca

1.4.2

1.4.3

EMDs: Dysregulation of TGF-β signalling

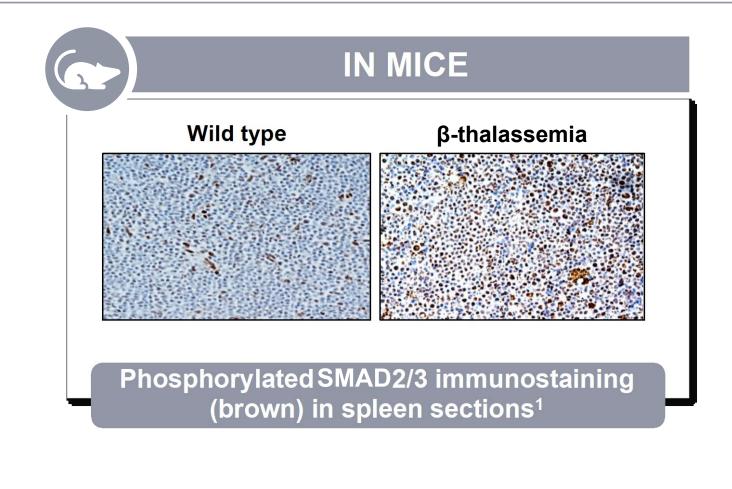
Overactivated TGF-β superfamily signalling via SMAD2/3 contributes to impaired erythroid maturation in select hematologic diseases^{1,2}

TGF: Transforming growth factor. GDF: Growth differentiation factor. DNA: Deoxyribonucleic acid.

1. Torres LDS, Okumura JV, da Silva DG, et al. Plasma levels of TGF-β1 in homeostasis of the inflammation in sickle cell disease. Cytokine 2016;80:18-25.

2. Zhou L, Nguyen AN, Sohal D, et al. Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood 2008;112:3434-3443.

3. Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 2014;20:408-414.

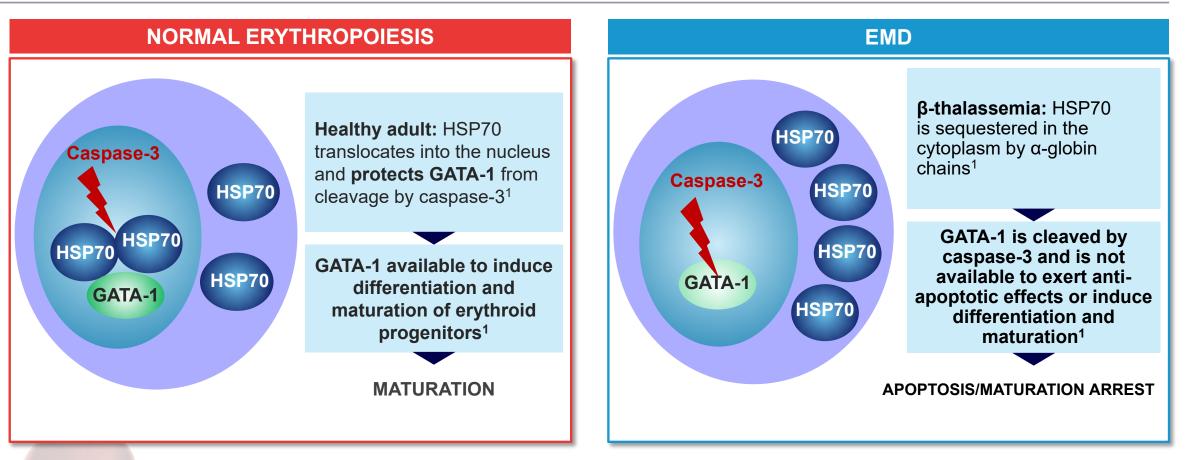

4. Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? *Blood Rev* 2018;32:130-143.

5. Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol 2016;172:512-523.

6. Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol 2016;174:661-673.

EMDs: Dysregulation of TGF-β signalling

Increased TGF-β superfamily signalling via SMAD2/3 is commonly observed in β-thalassemia¹


1.Suragani RN, Cawley SM, Li S, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine b-thalassemia. Blood 2014;123(25):3864-72.

www.keepmaturationontrack.ca

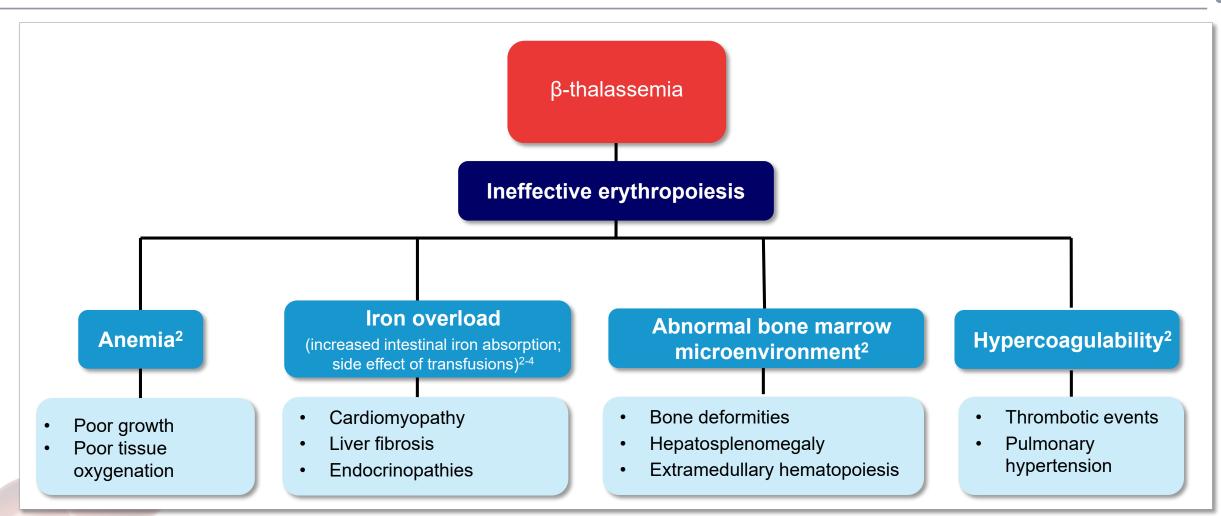
1.4.3

EMDs: GATA-1 degradation

Low levels of GATA-1 contribute to EMDs and IE and are commonly seen in β-thalassemia¹

HSP: Heat shock protein.

1. Valent P, Büsche G, Theurl I, et al. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica 2018;103:1593-1603.


www.keepmaturationontrack.ca

1.4.3

Implications of IE

1.4.4

IE may contribute to a range of symptoms and complications in patients with β-thalassemia¹

1. Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol 2016;172:512-523.

2. Sleiman J, Tarhini A, Bou-Fakhredin R, et al. Non-transfusion-dependent thalassemia: An update on complications and management. Int J Mol Sci 2018;19: 182.

3. Gattermann N. Iron overload in myelodysplastic syndromes (MDS). Int J Hematol 2018;107:55-63.

4. Munoz M, Villar I, Garcia-Erce JA. An update on iron physiology. World J Gastroenterol 2009;15:4617-4626.

Anemia is an underlying condition of β-thalassemia

Anemia is characterized by the shortage of functional hemoglobin or RBCs that reduces oxygen delivery to tissues¹

Ineffective erythropoiesis (IE) is a pathological state that results in low RBC count and contributes to anemia^{1,2}

Anemia results in lower RBC count^{1,2}

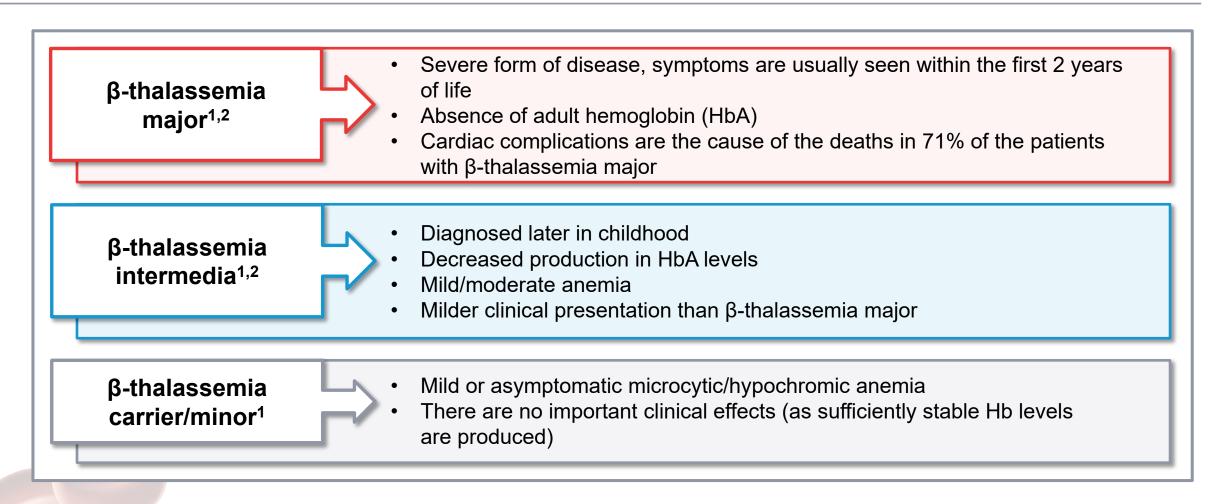
Number of circulating RBCs

Hb levels	Hematocrit levels
 According to the WHO, Hb levels <120 g/L in women or <130 g/L in men are indicative of anemia 	 Percentage volume of packed RBCs in a blood specimen

This condition may develop into chronic, severe anemia, which is frequently observed in a range of hematological disorders, often as a result of ineffective erythropoiesis.³

7107 2010,32.100-143.

WHO: World Health Organization. RBC: Red blood cell.


^{1.} Kassebaum NJ. The global burden of anemia. *Hematol Oncol Clin N Am* 2016;30:247-308.

^{2.} Smith RE. The clinical and economic burden of anemia. Am J Manag Care 2010;16:S59-S66.

^{3.} Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018;32:130-143.

Classification per disease severity

Patients are grouped into 1 of 3 major forms of β-thalassemia based on disease severity¹

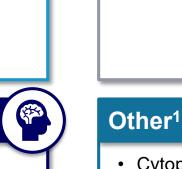
1. Galanello R, Origa R. Beta-thalassemia. *Orphanet J Rare Dis* 2010 May 21;5:11. 2. Cao A, Galanello R. Beta-thalassemia. *Genet Med* 2010;12:61-76.

Clinical presentation: Symptoms and complications

Cardiac siderosis Hepatic failure Pulmonary hypertension Fibrosis Silent cerebral ischemia Cirrhosis Venous thrombosis • Cancer Extramedullary ٠ Jaundice hematopoietic pseudotumor Chronic viral hepatitis Cardiac failure • Skeletal^{1,2}

Osteoporosis

1.7


Facial abnormalities

Cardiovascular^{1,2}

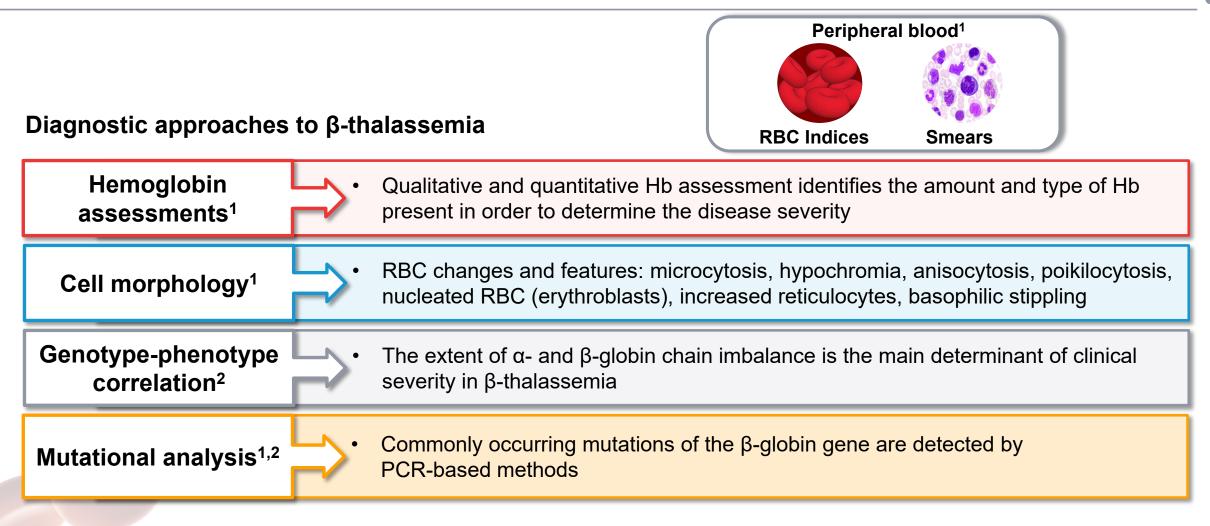
Hepatic^{1,2}

Endocrine²

- Hypothyroidism
- Hypoparathyroidism
- Hypogonadism
- **Diabetes mellitus**
- Poor growth

Digestive¹

- Gallstones
- Abdominal swelling

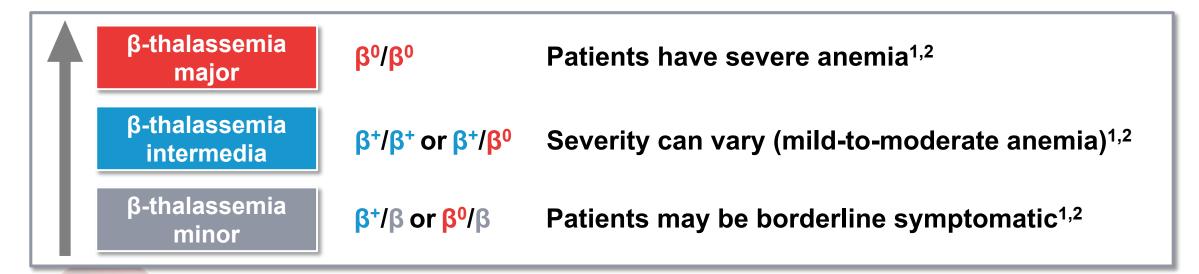

- Cytopenias (including microcytic anemia)
- Splenomegaly
- Leg ulcers
- Diarrhea
- Fevers, pale skin, irritability

1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010 May 21;5:11. 2. Cao A. Galanello R. Beta-thalassemia. Genet Med 2010:12:61-76.

Diagnosis

Hematological and molecular diagnostic methods are used to diagnose β-thalassemia

^{1.} Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010 May 21;5:11.


 Cappellini MD, Cohen A, Porter J, *et al.* Guidelines for the management of TD thalassemia. 3rd edition. Nicosia (CY): thalassemia International Federation. 2014. Accessed September 2020.
 www.keepmaturationontrack.ca RBC: Red blood cell. PCR: Polymerase chain reaction 2007CA2000434-01E

Mutations

Severity of β -thalassemia is influenced by the mutational status of the β -globin gene

- Over 200 disease-causing mutations in the β -globin gene have been documented¹
 - β^0 severe mutations that result in a complete absence of β -globin
 - β + mild promoter mutations that cause a slight reduction in β -globin chain synthesis
 - $-\beta$ no mutation

1. Cappellini MD, Cohen A, Porter J, et al. Guidelines for the management of TD thalassemia. 3rd edition. Nicosia (CY): thalassemia International Federation. 2014. Accessed September 2020. 2. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010 May 21;5:11.

合 く >

Summary

β-thalassemia is an inherited blood disorder that reduces Hb production¹

- Characterized by reduced or absent synthesis of the Hb β-globin chain, decreased Hb in the blood, ineffective erythropoiesis, reduced RBC production, and anemia
- β-thalassemia follows an autosomal inheritance recessive pattern Annual global incidence
 - » ~1 in 100,000¹

and

» ~1.5% of global population are carriers¹

Patients are classified according to disease severity (major, intermedia, minor)^{1,2}

- Symptoms vary depending on disease severity, but many are related to chronic anemia
- Disease severity is also influenced by the mutational status of the β-globin gene

Anemia is mainly driven by ineffective erythropoiesis (IE) and may lead to life-threatening outcomes in β -thalassemia.³⁻⁶

www.keepmaturationontrack.ca

RBC: Red blood cell.

2007CA2000434-01E

^{1.} Galanello R, Origa R. Beta-thalassemia. *Orphanet J Rare Dis* 2010 May 21;5:11.

^{2.} Cappellini MD, Cohen A, Porter J, *et al.* Guidelines for the management of TD thalassemia. 3rd edition. Nicosia (CY): thalassemia International Federation. 2014. Accessed September 2020.

^{3.} Kassebaum NJ. The global burden of anemia. Hematol Oncol Clin N Am 2016;30:247-308.

^{4.} Malcovati L, Della Porta MG, Strupp C, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS). Haematologica 2011;96:1433-1440.

^{5.} Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol 2016;172:512-523.

^{6.} Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol 2016;174:661-673.